
Improving BitTorrent Network’s Performance via Deploying Helpers

Ke Xu1, Yahui Yang2, Tao Chen1
1 Department of Computer Science and Technology, Tsinghua University, Beijing, China

2 School of Software and Microelectronics, Peking University, Beijing, China
Email: xuke@mail.tsinghua.edu.cn, yhyang@ss.pku.edu.cn, chentao@csnet1.cs.tsinghua.edu.cn

Abstract

This paper presents a study on how to increase the
BitTorrent Network’s performance via deploying
Helpers by modeling, simulating and analyzing. We
first define some high-bandwidth, high-connection and
controllable super nodes as Helpers, and then try to
find the best way to deploy them. Unlike other
researchers, we focus on combining the advantages of
both Multi-Server Systems and BitTorrent Systems. Our
main findings includes: (1) Deploying Helpers into
BitTorrent Systems can distinctly enhance the system
performance until the overall uploading bandwidth is
no longer the constraint condition. (2) After deploying
Helpers, the system can present resistance against
selfish peers. (3) We can dynamically change the
content of Helpers to serve the ever-changing hot
torrents and make it only serve charged peers or local
peers from economic angle.

1. Introduction

The peer-to-peer (p2p) network is used to share
content files containing audio, video, and data in a
scalable way. It no longer has the notion of “clients”
or “servers”, but only the notion of peers as both
“clients” and “servers” to other nodes in the network.
BitTorrent [2] is now becoming the most popular
peer-to-peer communication protocol. The success
of system has many reasons, such as: ease of use,
cutting file into pieces, rarest first, tit-for-tat, and so
on. Ease of use has greatly contributed to the fast
adoption of BitTorrent, and may be the most
important factor for the success of the system.
Cutting a file into pieces of fixed size can make peer
keep track of what it has and start uploading to other
peers as soon as they have downloaded even the first
piece. Rarest first ensures peers download the pieces
whose neighbors have fewest and reduce the
probability of certain peer having nothing of interest.

And the tit-for-tat (TFT) policy makes peers prefer
to upload to other peers which it can download fast.

Although the BitTorrent System is very
successful and effective, and recently has been
proved by many measurement and analytical
research [4] [5] [6], it leaves us some unsolved
problems. For Example:

(1)D.Qiu et al [6] have proved that BitTorrent
scales very well, but it is not all worthy of trust. For
example, if we try to download a file which is not
very popular, it will cost us a lot of time to
download or even cannot be finished. It is even
worse in the case that the publishers want to publish
certain files, for example, Microsoft wants to release
a patch, but cannot assure that the process of
publishing is fast and steady. So how can we solve
this problem?

(2)Although the BitTorrent system performance
is very well, the overall upload bandwidth is still the
bottleneck of the system, and the system
performance is limited. How can we further improve
the system performance?

All answers to these questions lead to a simple
solution: introducing some servers into the
BitTorrent Systems.

The Multi-Servers system is very steady. If there
are enough servers in the system, the system
performance will be very good, Even if there are
only a few servers, we can still ensure some
downloader can get the file; at least the system will
not die. The system can also ensure a certain
downloading speed. But if the arrival rate of new
requests is too high, the system performance will
turn bad quickly.

The BitTorrent system scales very well, but if the
seed leaving speed is very high or the uploading
bandwidth is too low, the system will die quickly.

So to a certain extent, they are complementary to
each other. We define some high-bandwidth, high-
connection and controllable super nodes as Helpers,

2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-3492-3/08 $25.00 © 2008 IEEE

DOI 10.1109/EUC.2008.96

507

2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-3492-3/08 $25.00 © 2008 IEEE

DOI 10.1109/EUC.2008.96

507

2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing

978-0-7695-3492-3/08 $25.00 © 2008 IEEE

DOI 10.1109/EUC.2008.96

507

and use them to combine the advantages of both
systems.

In this paper we use a simulator with a real
BitTorrent trace to study the performance of the new
mixed system. By using simulator, we can change
some parameters or even add or remove some
components of the system, which is very difficult to
be implemented in the true experimental
environment. Through real trace, we can improve
the creditability of our experiments. We also spread
the fluid model by D.Qiu et al [6], and use simulator
results to validate our model. We believe that our
research is complementary to previous BitTorrent
researches and establishes a new perspective.

The rest of paper is organized as follows: Section
2 lists some related works. Section 3 describes our
fluid model with Helpers. Section 4 gives details of
our simulator. Section 5 lists a series of simulation
results and validates the model. At last, section 6
concludes.

2. Related work

There have already been many researches on
BitTorrent, including analytical studies,
measurement studies, and simulator studies.

At the analytical side, D.Qiu and R.Srikant [6]
built a simple fluid model and got the relationship
between average download time and node joining,
as well as leaving rate and node bandwidth. They
also studied the scalability, performance and
efficiency of such a file-sharing mechanism, then
considered the built-in incentive mechanism of
BitTorrent and studied its effect on network
performance. Their main finding is that the
BitTorrent scales very well and the file sharing are
very effective. L.Guo et al[9] found that due to the
exponentially decreasing peer-arrival-rate in reality,
service availability in such systems becomes poor
quickly, after which it is difficult for the file to be
located and downloaded. Shirshanka Das et al [7]
tried to bring together traditional client/distributed-
server paradigms and pure BitTorrent based peer-to-
peer delivery models. The content-delivery-provider
benefits as it can provide guarantees with expected
download times while deploying a much lower
number of servers, and the end user benefits by
getting a much shorter download time compared to a
pure BitTorrent download. We expand this idea and
do a series of more in-depth research and
experiments. Yao Yue et al [10] also expanded the
simple fluid model with multi-group.

At the measurement side, M.Izal et al [4] studied
BitTorrent based on the "tracker log" of a pop file
(Red hat 9 Distributions). The main findings are:
1）the leechers will stay for another 6.5 hours after
they have finished downloading. The reasons
include: the downloading process often finishes at
night; the downloader is lazy to stop; and the
downloading process is legal. 2) The average
download speed is more than 500kb. 3) TFT
mechanism works well 4) LRF mechanism works
well 5) the seeds upload is 2 times of the leechers
upload. Another study of long time (8 months) and
more files (more than 60000files) by J.A.pouwelse
et al [5] got some different results. The main
findings include: 1) the average download
bandwidth is only 240kb 2) only 17% of the
leechers stay more than 1 hour after they have
finished downloading. And the most important
finding is: a few highly reliable seeds are more
important than much larger number of short-lived
seeds, which is the main motivation of our research.

At the simulator side, for us, the most related
work is done by Ashwin R.Bharambe et al [1]. They
presented a simulation-based study of BitTorrent to
deconstruct the system and evaluate the impact of its
core mechanisms. They focused on peer link
utilization, file download time and fairness amongst
peers in terms of volume of content served. And
their simulation methods greatly help us in
designing experiments. Weishuai Yang et al [8]
implemented a BitTorrent simulator called General
Peer-to-Peer Simulator, which is the first BT
simulator that models the full behavior of the
protocol. GPS[8] is a message level discrete event
simulator with a built-in protocol implementation of
BitTorrent. It allows simulation of both structured
and unstructured overlays. While it is a message
level simulator, it also partially models the
underlying network topology using the GT-ITM
model with Transit-Stub topology . It does not
model each packet, but provides a number of
different flow level models. And both of their
simulator-design methods are very helpful.

Our research is different from previous research,
because we always focus on the impact of deploying
Helpers in the following aspects: How do they
change the BitTorrent fluid model? How do they
improve the system performance? And how should
we deploy them to get the best performance?

3. Analysis

508508508

3.1. Definition of helper

We define Helper like this:
1) Essentially, Helper is a seed in BitTorrent, so it

can be involved into the system.
2) Its bandwidth and number of connections is

much higher than the normal seed.
3) It will never leave the system, while normal

seed leave the system.
4) We can manually change the number and the

content of the Helpers.

3.2. Deploying Helpers into BitTorrent System

Then we build a model based on D.Qiu et al [6]’s
simple fluid model, introduce the concept of Helpers,
and use the results of previous researchers to further
simplify the model.

D.Qiu et al [6] assumed the arrival rate of new
requests according to a Poisson process. L.Guo et al.
[9] found that the peer arrival rate at a torrent is
actually given by an exponential decreasing function
of the time.

D.Qiu et al [6] also discovered that the
effectiveness of file sharing 1 (log() /)kp pη = − , while
p is the number of pieces, and k is the maximal
connections. So η is very close to 1.

The parameter θ means that the rate leechers
abort the download. It is probably because the
downloading speed is too slow or the leechers are no
longer interested in the torrent. L.Guo et al. [9]
found that if the system has some altruistic seeds,
which always stay until the last downloader finishes,
the failure ratio of the torrents θ is probably equal
to 0. In our systems, we have these altruistic seeds
(at least one server), so we assume θ is 0.

Then we find that the upload bandwidth of
Helpers M is actually defined by m (the maximal
number of peers it can upload to) and u (the
uploading bandwidth for each peer), and n (the
number of Helpers). We assume:

 * *M n m u= (1)

Symbol Meanings

x(t) number of leechers in the system at time t.
y(t) number of seeds in the system at time t.
λ the arrival rate of new requests
μ the uploading bandwidth of a given peer

M the uploading bandwidth of the Helpers, we
assume * *M n m u=

n the number of Helpers

m the maximal number of peers it can upload to
u the Helper’s uploading bandwidth for each peer
c the downloading bandwidth of a given peer
γ the rate at which seeds leave the system
θ the rate leechers abort download, we assume it is 0
η the effectiveness of file sharing, we assume it is 1
T Average downloading time
F File size, we assume it is 1

Table 1: the parameter of fluid model
We define parameters in Table 1, and try to describe
the evolution of x and y based on the above model.

min{ (), (() ()) }

min{ (), (() ()) } ()

dx cx t x t y t M
dt
dy cx t x t y t M y t
dt

λ μ

μ γ

= − + +

= + + −

(2)

To study the steady state, we let
() () 0dx t dy t

dt dt
= =

And we can obtain:
 0 min{ (), (() ()) }
0 min{ (), (() ()) } ()

cx t x t y t M
cx t x t y t M y t

λ μ
μ γ

= − + +
= + + − (3)

After solving (3), we can get
/x cλ= (Downloading bandwidth constraint)
Mx λ λ

μ γ
−= − (Uploading bandwidth constraint)

To calculate the average downloading time for a
peer in steady state, we use Little's law as follows:

*x Tλ=
And we can obtain:

1 .T
c

= (Downloading bandwidth constraint)

1 1 MT
μ γ μλ

= − − (Uploading bandwidth constraint)

If let M=0, we can get the result of pure
BitTorrent case.

1 .T
c

= (Downloading bandwidth constraint)

1 1T
μ γ

= − (Uploading bandwidth constraint)

Then we summarize the 2 cases in Table 2.

 BitTorrent Mixed

T(download
bandwidth
constraint)

1/c 1/c

T(upload
bandwidth
constraint)

1 1
μ γ

−
1 1 nmu
μ γ μλ

− −

Table 2: The average download time of the 3 cases
Then we can conclude: The BitTorrent System

with Helpers will get better performance than pure
BitTorrent System.

We will further validate the fluid model through

509509509

the simulation result in next Section.

4. Methodology

4.1. Simulator detail

If we want to study the performance of new
mixed system, we must change the system
parameters and add some components into the
system. It is very difficult to be implemented in the
true experimental environment. So we use a
simulation-based approach to understand and
deconstruct the new system.

Our simulator is basically an expansion of
Ashwin R.Bharambe et al [1]’s, and we also refer
the WeiShuaiYang et al [8]’s implementation.

Our discrete-event simulator models peer and
server’s activity (joining, leaving, and block
exchanging) as well as many of the associated
BitTorrent mechanisms (local rarest first, tit-for-tat,
etc.) in detail. Through comparing the two existing
simulators, we find some most important design
principles.

1) We don’t model the detail of the protocol, just
like sub-piece; due to our simulator is not packet
level, the sub-piece is totally useless.

2) We don’t model the bottleneck in the middle of
network, because we have controlled the bandwidth
in the edge of the network. There’s no need to do this
work twice.

The maximum scale of our experiments is up to
2000 nodes.

4.2. Simulator Parameters

We set the common simulator parameter in Table 3.

Parameter Meanings

Trace Redhat 9
File size 100MB
Leechers download/uplink bandwidth 1536Kb/512Kb
Neighbors 40
Block Size 256KB
Max Uploads 5
Simulation Time 5Hour
Nodes Limit 2000
Helper Bandwidth 50Mb

Table3: the parameters of simulator
To derive realistic arrival patterns, we use the

tracker log for the Redhat 9 distribution torrent [4].
We choose the File Size 100MB because it is just

the fit size for our simulation. If it is too small, we
can’t get the real situation. But if it is too large, we

may not have enough simulation time to wait for the
system entering the steady state.

Then we choose the downloader’s bandwidth
1536Kb/512Kb in all of our experiment except the
Hetero-peers experiment.

Fig.1 shows that the average downloading time of
system with simulation time. It shows that the
system gradually turns into steady state after 5000
second.

We will do a series of experiments to validate the
fluid model and observe the different aspects of
system performance increase via deploying Helpers
in different ways.

 2000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

A
vg

 D
ow

nl
oa

d
T

im
e

Time(Sec)

Avg download time

Fig. 1 Average Download Time of System

5. Simulation result

5.1. The mixed system is better

In BitTorrent system, system performance is
usually constraint by the overall uploading
bandwidth. So through the fluid model, we conclude
that the average downloading time of mixed system
1 1 M
μ γ μλ

− −
 is less than the pure BitTorrent System 1 1

μ γ
−

 .

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000

D
ow

nl
oa

d
tim

e
(s

ec
)

Downloaders (sorted ascending)

BT
Mix

Fig. 2 BT vs. Mix

Fig.2 shows that the BitTorrent System with
Helpers has the better performance.

5.2. Touch the optimal performance

In BitTorrent System, the overall downloading

bandwidth is usually much higher than the overall
uploading bandwidth. So as the model shows that
the average downloading time is usually 1 1

μ γ
−

, but not

510510510

1/c.
Fig.3 shows that the uploading utilization is

nearly 100%, but the downloading utilization is only
less than 40%. So the overall uploading bandwidth
is the constraint conditions, and the system
performance is restricted.

Fig.4 shows that after adding 5 Helpers, the
downloading utilization has a significant
improvement. If we continually add servers, we can
finally balance the difference between the overall
uploading and downloading bandwidth.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

B
an

dw
id

th
 U

til
iz

at
io

n

Time(Sec)

upload utilization
download utilization

Fig. 3 Bandwidth Utilization in pure BitTorrent System

From the fluid model we can calculate the
theoretical minimum of average download time.

min *1/T F c=
In our simulation the file size F is 100MB, and the

downloading bandwidth is 1536kb. We can get：
min *1/ 100 /1535 533secT F c MB kb= = =

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

B
an

dw
id

th
 U

til
iz

at
io

n

Time(Sec)

upload utilization
download utilization

Fig. 4 Bandwidth Utilization in pure BitTorrent System

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000

D
ow

nl
oa

d
tim

e
(s

ec
)

Downloaders (sorted ascending)

Optimal
Normal BT
Add Helper

 Fig. 5: Adding enough Helpers to get the best performance
Fig.5 shows after adding enough Helpers, the

system performance will be very close to the
theoretically optimal state.

5.3. Presents resistance against selfish peers
In our fluid model γ is the rate at which seeds leave
the system. In pure BitTorrent system, the average

downloading time is 1 1
μ γ

− , if γ = ∞ (also means the

leechers leave as soon as they finish downloading,
serving nothing), the average downloading time
turns to 1

μ
.The system performance decreases

quickly.

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000

D
ow

nl
oa

d
tim

e
(s

ec
)

Downloaders (sorted ascending)

serve nothing
serve 1/2 file

(a)

 0

 500

 1000

 1500

 2000

 2500

 0 1000 2000 3000 4000 5000 6000

D
ow

nl
oa

d
tim

e
(s

ec
)

Downloaders (sorted ascending)

serve nothing
serve 1/2 file

(b)

Fig.6 (a) Downloading time affected by γ in pure BitTorrent
(b) Downloading time affected by γ in BitTorrent with Helpers.

Fig.6 (a) shows that in pure BitTorrent network, this
behavior will do great damage to the system
performance.
 But in the mixed system, the impact of γ = ∞ is
much less than before. We can conclude from the
fluid model even if γ = ∞ , the average downloading
time only turns to 1 nmu

μ μλ
− , the parameter γ is no

longer the decisive factors.
So the system presents the resistance against selfish
peers.

5.4. Dynamically changing contents of Helpers

 The real BitTorrent System has more than one
torrent. For simplicity's sake, of all of our above
experiment, we consider only one torrent.

We consider the case when the system has multi-
torrents in this experiment, assuming one torrent is
much popular than the other. Then we dynamically
change the composition of Helpers to get the best
performance.

Fig.7 shows that the whole system’s performance
is generally decided by the popular torrent. So we
must deploy more Helpers to assist the popular
torrent, and we also need to leave a small quantity of

511511511

Helpers to other torrent.
For example, if we have 5 Helpers totally, one of

the optimal cases is that we put 4 Helpers to assist
the popular torrent, and 1 Helper to help other
torrents.

While the popular torrent is changed, we can
also change the files in our Helpers to get the whole
system’s best performance.

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50

A
vg

 D
ow

nl
oa

d
tim

e

The Composition of Deployed Servers

popular torrent
not popular torrent

total

Fig. 7: Dynamically changing the composition of

deployed Helpers

5.5. Serving only chosen Peers

In the real system, deploying Helpers costs a lot.
So the incentive of deploying Helpers is very
important.

For example, we can make Helper only serve
charged peers or local peers, and the chosen peers
can have a very great performance improvement.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

D
ow

nl
oa

d
tim

e
(s

ec
)

Time(sec)

Chosen Peers
No Chosen Peers

Fig.8: Servers can serve only chosen IP

Fig.8 shows that the chosen peers have a very
distinct performance increase.

For example, we can deploy many Helpers in the
system, and a Helper serves only one local area.
This policy is very useful when a university want to
provide some convenience for its students.

6. Conclusion

In this paper, we have described a fluid model and
a series of experiments, aiming at understanding the
performance increase after deploying Helpers. And
we also try to find the best way to deploy them.

Our main findings are summarized as follows: (1)
Deploying Helpers into BitTorrent Systems can

distinctly enhance the system performance until the
overall uploading bandwidth is no longer the
constraint condition. (2) After deploying Helpers,
the system can present resistance against selfish
peers. (3) We can dynamically change the content of
Helpers to serve the ever-changing hot torrents and
make it only serve charged peers or local peers from
economic angle.

Our simulation result shows that the fluid model
matches the BitTorrent System with Helpers very
well. And the Helpers are very helpful on the system
performance.

As for future works, we intend to consider the
topology of network in our simulator. We would like
also to deploy some servers in real BitTorrent
Network to do some real experiments.

7. Acknowledgement

Supported by the National High-Tech Re-search
& Development Program of China (863 Program)
(Grant Nos. 2008AA01A326)

8. References

[1] Ashwin R.Bharambe, Cormac Herley, Venkata
N.Padmanabhan Analyzing and Improving BitTorrent
Performance. INFOCOM 2006.
[2] BitTorrent. http://bittorrent.com
[3] B. Cohen. Incentives build robustness in BitTorrent. In
Proc. Of Workshop on Economics of Peer-to-Peer Systems,
May 2003.
[4] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. A.
Hamra, and L. Garc’es-Erice. Dissecting BitTorrent: Five
months in a torrent’s lifetime. In Proc. of Passive & Active
Measurement Workshop, Apr. 2004.
[5] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips. The
BitTorrent P2P file-sharing system: Measurements and
analysis. In Proc. of International Workshop on Peer-to-Peer
Systems, Feb. 2005.
[6] D. Qiu and R. Srikant,. Modeling and performance
analysis of BitTorrent-like peer-to-peer networks. In Proc. of
ACM SIGCOMM, Aug. 2004.
[7] Shirshanka Das, Saurabh Tewari, Leonard Kleinrock The
Case for Servers in a Peer-to-Peer World. IEEE ICC 2006.
[8] Weishuai Yang and Nael Abu-Ghazaleh. GPS: A General
Peer-to-Peer Simulator and its Use for Modeling BitTorrent,
in Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2005.
[9] L. Guo, S. Chen, Z. Xiao, E. Tan, X. Ding, and X. Zhang.
Measurements, analysis, and modeling of BitTorrent-like
systems. In ACM SIG-COMM/USENIX IMC 2005, pages
19–21, Oct. 2005.
[10] Yao Yue , Chuang Lin, Zhangxi Tan Analyzing the
Performance and Fairness of BitTorrent-like Networks Using
a General Fluid Model, In IEEE GLOBECOM 2006.

512512512

