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Abstract—The emergence of cloud computing as an efficient
means of providing computing as a form of utility can already
be felt with the burgeoning of cloud service companies. Notable
examples including Amazon EC2, Rackspace, Google App and
Microsoft Azure have already attracted an increasing number of
users over the Internet. However, due to the dynamic behaviors
of some users, the traditional cloud pricing models cannot well
support such popular applications as Mobile Cloud Computing
(MCC). To mitigate this problem, we take our fist steps towards
the design of an efficient double-sided combinatorial auction
model in the context of mobile cloud computing. In particular, we
carefully develop the framework of online combinatorial double
auctions and apply a Winner Determination Problem (WDP)
model for the proposed auction mechanism. The experiment
results indicate that the allocation efficiency of our proposed
online auction mechanism is comparable to the social optimal
solution.

I. INTRODUCTION

Cloud computing is emerging as a promising paradigm that
enables on-demand and elastic access to computing infrastruc-
tures. Despite the burgeoning of Internet cloud services, the
existing cloud markets are still in the premature stages with
respect to their pricing structures. Amazon EC2, for example,
advertises $0.03−0.12 per hour for each of its Virtual Machine
(VM) instances, depending on their types. Such a posted-offer
pricing model is commonly used when the commodity to be
priced has a well-known value that is common knowledge to
both sellers and buyers, and a buyer is simply a price-taker
that chooses whether or not to pay the price, complete the
transaction, and acquire the commodity. As a price taker, a
buyer cannot affect the price of the commodity. Such a fixed
pricing scheme, while perhaps acceptable to a small group of
enterprise and individual users, essentially shut the door upon
the vast majority of potential cloud users.

To mitigate such a problem, the auction-based instances are
widely suggested in the cloud market. Such Spot Instances
allow the customers to bid on unused resources (e.g., EC2
VMs) and run those instances as long as their bids exceed
the current spot price, bringing more freedom to users. Re-
searchers therefore proposed different auction mechanisms to
implement resource allocation and pricing in cloud markets [1]

[2] [3] [4]. However, these single-sided single-minded auction
models cannot well support such popular cloud applications
as Mobile Cloud Computing (MCC). In particular, Sharrukh
Zaman added detailed reasons in [5] that auctions have clear
advantages over others when the auctioned items are comple-
mentary. In other words, the auctioned items will have a higher
value as a set than as separate parts. It is known that the usage
of mobile computing is increasing rapidly. A survey from
Juniper Research [6] states that the consumer and enterprise
market for cloud-based mobile applications is expected to
mount to $9.5 billion by 2014. It is thus important to develop
a smarter auction model to support such an elevating demand.

In this paper, we for the first time introduce an efficient
double-sided combinatorial auction model in the context of
mobile cloud computing. To better support the MCC ap-
plications and users, we carefully design the framework of
online combinatorial double auctions and apply a WDP model
for the proposed auction mechanism. We further develop a
decomposition algorithm to solve WDP, which can effectively
determine winners as well as prices of each auction in afford-
able time. Moreover, we also investigate a bidding language
to facilitate mobile users to express valuations concisely. Our
experiment results show that the allocation efficiency of our
proposed online auction mechanism is comparable to the social
optimal solution and computationally feasible.

The rest of this paper is organized as follows: Section
2 reviews some related work, such as combinatorial and
double auctions. Section 3 proposes a framework of the MCC
combinatorial double auction. Section 4 describes our novel
bidding language LMU for mobile users. The model and
algorithm of WDP for our auction mechanism are presented
in Section 5. Then the simulation results are given in Section
6. Finally, Section 7 concludes the paper.

II. RELATED WORK

As cloud computing is designed to be a market-oriented
computing paradigm, resource allocation and pricing are al-
ways hot topics. Bidding and auctions are deemed to be
effective solutions to grid and computing resource markets [7].
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As MCC is the combination of wireless access services and
cloud services, it is feasible to apply auctions in MCC markets.
In this section, we will present related work on auctions (espe-
cially combinatorial and double auctions), and then review the
use of auctions to implement resource allocation and pricing
in cloud and MCC markets.

A. Combinatorial and Double Auctions

Auctions are effective economic ways for setting the price
of commodities based on supply and demand in real-world
markets. The auction model supports one-to-many (for in-
stance, single-sided auction) or many-to-many (e.g., double
auction) negotiations between sellers and buyers, and reduces
negotiations to a single value (i.e., price). Moreover, in an
auction, players may be allowed to bid for one commodity
or sets of items at one time. Therefore, the design of auction
mechanism is the hot spot in micro-economics.

Combinatorial Auctions (CAs) that allow bids for bundles of
items, provide a great way of allocating multiple distinguish-
able items among bidders whose perceived valuations for com-
binations of those items [8]. CAs can make bidders flexibly
reveal their preferences on the replaceable or complementary
relationships of items, which can decline the bidding risk,
increase revenue and thus improve the economic efficiency
of auction remarkably. The main topics concerned in CAs
are: bidding languages, winner determination and mechanism
design.

In recent years, CAs have generated significant interest
as automated mechanisms for buying and selling bundles of
scarce resources. The developments of the Internet and e-
commerce have provided a wonderful platform for CAs. CAs
have been applied in wide economic domains successfully, in-
cluding truckload transportation, industrial procurement, radio
spectrum auction, airport time slots, etc.

Now many e-commerce platforms adopting CAs only sup-
port one-to-many negotiations, i.e., single-sided auctions. One
auctioneer initials an auction before many buyers bid, and
vice versa. Although single-sided auctions are well-suited for
markets with a limited number of buyers or sellers, these
mechanisms are non-effective when the markets consist of
numerous of buyers and sellers. To maximize the profits, a po-
tential buyer or seller may bid repeatedly in various auctions,
and he/she has to contemplate the possible outcomes of the
auctions hosted by different auctioneers. This computational
burden hinders the trades, especially in CAs. To relieve this
computational burden and promote transactions, many recent
researches have been devoted to the double auctions [9].

Double auctions are many-to-many negotiations, which en-
able multiple buyers and sellers to bid simultaneously in one
auction. Indeed, the major exchanges today, like NASDAQ,
New York Stock Exchange (NYSE) and the major foreign
exchange (FX), apply variants of double auctions [10].

B. Auctions in cloud and MCC Markets

Auction-based mechanisms have been proposed in various
fields such as network bandwidth, wireless spectrum, energy

industries and advertisements, which investigate how partici-
pants behave in a competition for resources. The use of auc-
tions in computing dates back to 1968 when Sutherland [11]
proposed allocating processing time in a single computer via
auctions. Then with the development of grid computing, many
market-based resource allocation strategies were brought out,
some of which applied auction mechanisms to grid scheduling
[7] [12].

Cloud computing appeared as a more effective market-
oriented computing paradigm than grid computing, so cur-
rently researchers are investigating the economic aspects of
cloud computing from different points of view. Buyya et al.
[1] proposed an infrastructure of federated clouds for auction-
based resource allocation across multiple clouds. Prasad et
al. [13] and Zaman et al. [5] used combinatorial auctions
to implement computing resources and virtual machine allo-
cation. Furthermore, Lee et al. [2] brought out a real-time
group auction system for cloud application allocation. Zhang
et al. [3] put forward a framework for online auctions in
cloud computing. In our former work [4], a continuous double
auction mechanism was proposed for cloud markets, and a
bidding strategy was designed for cloud users and CSPs to
maximize their profits.

For MCC resource and application allocation, there is little
work introducing auction mechanisms to MCC markets. Niy-
ato et al. [14] developed an auction mechanism with premium
and discount factors for resource allocation in MCC systems.
The major difference between our work and the current work
is that we are considering a combinatorial double auction
mechanism for MCC markets, which enables mobile users and
MCC providers to submit bids and asks simultaneously and
supports users to bid sets of commodities at one time.

III. THE FRAMWORK OF MCC COMBINATORIAL DOUBLE
AUCTION

We consider a platform for MCC markets where multiple
mobile users and MCC providers respectively buy and sell
commodities in a combinatorial double auction manner. Our
solution is efficient for resource allocation in MCC and appeals
to mobile users and MCC providers. On one hand, mobile
users can bid bundles of applications and services on the
platform with light mobile data usage. On the other hand,
providers can supply sets of commodities in each auction.

A. Design Requirements

A feasible auction model for MCC should meet the follow-
ing requirements:

Firstly, the MCC services are the combinations of wireless
services and cloud computing resources. As shown in Fig.1,
the mobile users access services provided by remote clouds via
wireless networks, like 2G, 3G or WiFi. Mobile communica-
tion base stations or WiFi access points provide radio resources
(i.e., bandwidth), while remote cloud provide applications,
computing and storage resources. Obviously, if mobile users
want to use cloud services, they also need to buy wireless
access services. In a feasible MCC market, commodities cover
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Fig. 1. MCC enabling mobile users accessing cloud services through wireless
networking

wireless access services as well as applications, computing and
storage resources. Therefore, an effective auction mechanism
should allow each user to submit a bid for sets of items
(sometimes called bundles), rather than to bid every item in
many sequential auctions.

Secondly, energy efficiency is of particular importance for
mobile devices. Moreover, both transmission and computation
consume energy. In wired clouds, this is not a big concern.
To attract mobile users to take part in auctions, a mechanism
allows users to submit bids while transmitting data as few
as possible with few computations to construct their bids.
Furthermore, mobile users access online auction platforms
roaming across different wireless networks, so the less data
transmission gets the lower cost. Therefore, a concise bidding
language is vital for mobile users.

Thirdly, different from traditional CSPs, MCC providers
usually offer various applications besides computing utilities
and storage resources, such as image processing, natural lan-
guage translating, and multimedia search [15]. As mentioned
previously, mobile users are attracted to buy a package of com-
modities together. For example, an increasing number of users
prefer to take photos using mobile devices. However, because
of the limited storage space they prefer to upload some photos
to online storage servers when there are inadequaete space
in their mobile devices. An MCC provider P1 supplies such
storage services. To get additional profits, P1 also provides an
animator application and other image-processing applications.
Thus, a mobile user Peter may buy 1GB storage space and 10
runs animator for 1 year. Thus when Peter takes a new photo,
he can upload it to the storage servers of P1. If he wants
to make an animation, he can select photos on the servers
and submit them to the animator application. The application
will run on the remote servers and return the result to Peter.
Because there are more and more such applications in MCC
markets, the scale of one auction may be large. Consequently,
an effective combinatorial auction mechanism is vital for MCC
markets, which should quickly determine winners and prices
of an auction consisting of many users and providers.

Finally, in current cloud markets cloud users often rent
resources to support websites, or run scientific computing [16]
[17]. They are professional enough to accept the complicated
online auctions, and they even can leave bidding to the user
brokers. On the other hand, the simple auction rules are more
acceptable to mobile users.

In summary, in such competitive MCC markets populated
by mobile users and MCC providers, combinatorial auctions

Application & Storage

Mobile Users
MC Providers

Online Auction Platform

...

Asks Bids

Combinatorial Double

Auction Mechanism

Bulletin Board

Fig. 2. A Framework of the MCC Combinatorial Double Auction Platform

(CAs) are feasible to solve resource allocation and pricing
problems. Each mobile user demands sets of various com-
modities, who can bid bundles in one combinatorial auction.
Moreover, double auctions can also be adopted to improve
market efficiency, in which buyers and sellers can submit bids
simultaneously.

The first difference between our solution and the current
ones is that we consider a combinatorial double auction
mechanism for MCC markets, which enables mobile users and
MCC providers to submit bids and asks simultaneously, and
supports users to bid sets of commodities at one time. The
second difference is that we design a novel bidding language
for mobile users.

B. Framework Overview

The online auction platform collects the bids and asks
from mobile users and MCC providers respectively, and it
computes who and how to win the auctions. The overview
of the framework is shown in Fig.2.

It is an electronic bidding platform, which can be easily
accessed via the Internet and make use of e-commerce tech-
nologies. The platform plays the role of an auctioneer, on
which mobile users can submit bids for bundles of items, while
MCC providers can submit asks. In addition, auctions are all
carried out in an online manner, i.e., users and providers can
take part in auctions whenever they need, and the platform
can determine winners and price instantaneously as soon as
auctions close.

The auction on the platform can be divided into 3 states:
the registration stage, the bidding stage and the winner deter-
mination stage. In the registration stage, the information of all
resources, the related parameters of mobile users, and MCC
providers are presented on the bulletin board, and every player
is certified. Then in the bidding stage, users can submit bids
and providers can submit asks. Eventually, the winners and
prices are computed by the determination module according
to the combinatorial double auction mechanism.

Furthermore, mobile users can download a bidding appli-
cation, which executes on mobile devices to translate us-
er’s specific demands into requests described in the bidding
language, by which user’s heterogeneous demands can be
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restricted to regulated and consistent forms while the details
of the requirements can still be revealed. Each request is then
submitted to the platform. MCC providers also can submit
asks of commodities they want to sell. After an auction
closes, the platform computes winners and prices based on
the auction mechanism, and then announces the results to
users and providers who establish the connection and start
to run/host applications once the charging and payment are
complete.

The bidding rules of the platform are given in the next
subsection. Section 4 describes the bidding language for
mobile users, and Section 5 presents how to determine winners
in the MCC combinatorial double auction.

C. The Market Rules

In our MCC auction framework, the platform acts as a
central auctioneer who receives the bids and asks, and then
carries out all the computation to find the optimal allocation
of items to bidders. To facilitate bidders and improve trading
efficiency, some market-rules are defined as follows.

Rule 1: The platform prescribes the Bidding Period, tbp,
can be one day, several hours, etc. During the Bidding Period,
mobile users and MCC providers are allowed to submit bids
and asks, by the end of which the auction closes and the market
clears. At an auction, only one bid or ask can be submitted by
each mobile user or MCC provider. At the end of the Bidding
Period, all bids and asks are opened. Furthermore, auction
results i.e, winners and prices are also published.

Rule 2: A bid of user i can be for bundles of items,
denoted as Bi = LMU(< S,vS

i >). S is a subset of
the available commodities in the auction. vSi is a valuation
(willingness to pay) of user i for S. Each mobile user usually
has heterogenous demands and valuations for commodities,
which can be expressed by the bidding language LMU .

Rule 3: An ask of provider j can be for multiple units
of items, denoted as Aj = (< r1, c

r1

j , qr1

j >, . . . ,<
rk, c

rk

j , crk

j >, . . . ,< rm, crm

j , qrm

j >). crkj is the offered
price per unit for commodity rk of provider j, and qrkj is the
quantity of commodity rk.

Rule 4: To prevent unreasonably low bids and speed up
the trading process, the Minimum Bid allowed in the market,
Bmin, is defined. It can be set according to history transaction
prices or 0. For any atomic component of each bid Bi,
vSi /|S| ≥ Bmin.

Rule 5: In the same way, to prevent unreasonably high asks
and speed up the trading process, the Maximum Ask allowed
in the market, Amax, is defined. It can also be set according
to history transaction records or +∞. For any element in each
ask Aj , crkj ≤ Amax.

The above rules are published on the MCC auction platform.
As long as users and providers take part in auctions, they must
submit bids and asks according to the rules. The rules not only
ensure auction efficiency, but also enable users and providers
to understand the auction mechanism. In addition, the history
transaction records published on the the platform help users to
decide their valuations on various services and applications.

Perter
Mobile User

MCC Providers

Ask (Offer)

 

App1 & App2 : $5 App2 & App3 : $7 App3 : $3

$0.5

$4.5
$3

Tom Linda

P1 P2

Bid

Platform

Winner Determination Module
Publish winners &

prices

Announce

Collect charge

Send payment

Announce 

P1 provides (App1, App2) to Peter,

P2 provides (App3) to Linda

Fig. 3. A scenario of an auction: consisting of 2 providers and 3 users
bidding for 3 commodities

D. Scenario of A Combinatorial Double Auction on The
Platform

With the online auction platform and bidding rules, mobile
users and MCC providers can trade by auctions. Users often
have a variety of demands, and providers also supply various
services and applications. For a mobile user who needs two
applications, bidding two items in one combinatorial auction
is more efficient than in two sequential auctions separately.
Moreover, double auctions allows users and providers to bid
simultaneously in one auction, which also improves market
efficiency. Advantages of the combinatorial double auction for
MCC markets can be revealed in the following scenario shown
in Fig. 3.

During the bidding period, mobile users and MCC providers
may submit bids and asks simultaneously. Each user can bid
one or bundles of items, while each provider can supplies
multiple units of commodities. In Fig. 3, Peter seeks to buy
one unit of App1 and App2 before bidding $5. Tom bids $7
for one unit of App2 and App3. Linda bids $3 for one unit
of App3. All the three users submit their bids to the online
auction platform. Two MCC providers, P1 and P2, take part
in the auction. P1 sells two units of App1 at price $0.5 and
three units of App2 at price $4.5. P2 sells three units of App3 at
price $3. Both providers also submit their asks to the platform.

At the end of the bidding period, the winner determination
module computes winner and prices of the auction, the algo-
rithm of which will be described in Section 5. Then the results
are announced to users and buyers. In the auction, Peter wins
one unit of app1 and app2 supplied by P1, and Linda wins
one unit of $3 supplied by P2. However, Tom loses to Peter
and Linda.

As shown in the above scenario, the combinatorial double
auction mechanism is effective and flexible for mobile users
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and MCC providers. It not only ensures competitive bidders
and offers simultaneously, but also allows users to bid for
bundles of items at one time. However, to apply the auction
mechanism to real markets, there are two key problems to
solve: a concise bidding language for users and a feasible
WDP algorithm. The solutions will be given in the following
sections.

IV. THE BIDDING LANGUAGE FOR MOBILE USERS

Bidding language is a language for expressing valuation
functions, and a good one which allows bidders to concisely
express natural valuation functions. In our MCC auction
framework, the bidding language is implemented in the mobile
client side to translate user’s specific demands into requests.
In this section, we first analyze different types of mobile user
valuations, and then we put forward a novel bidding language
LMU to represent heterogenous user demands concisely and
consistently. At last, we discuss the novel contributions of
LMU in MCC combinatorial double auctions.

A. Heterogenous Mobile User Valuations

In general, let R be the set of all the types of goods for sale
in a CA, a buyer could have a different valuation for every
subset S of R. Because R has 2|R|−1 different subsets, there
are 2|R| − 1 possible bids to specify in the CA.

Furthermore, how valuable one item is to a buyer may
depend on whether he/she possesses another item. On one
hand, some of these items are substitutable (e.g., users can use
storage from different places) that they have similar functions
to the users. On the other hand, some items are complementary
that users will need them as a bundle (e.g., users need both
wireless connection and storage for online photo posting).

The complementary and substitutable items in an MCC
market can be defined as follows.

Definition 1: A mobile user i has a valuation for a com-
modity r, denoted as v

{r}
i . For user i, items a and b are

substitutable if v
{a,b}
i < v

{a}
i + v

{b}
i , and items a and b

are complementary if v
{a,b}
i ≥ v

{a}
i + v

{b}
i . Especially,

when items a and b are independent, are also be viewed as
complementary because v

{a,b}
i = v

{a}
i + v

{b}
i .

The different valuations for various items lie on user’s utili-
ties. A user is satisfactory with the allocated resources, which
is referred to as the utility. Because of the complementarity
and substitutability, a mobile user’s total utilities do not always
equal to the sum of his/her utility of each commodity. An
efficient auction mechanism should maximize buyer’s utilities
and seller’s payoffs, so does our MCC mechanism. Thus we
formulate the user utility functions as follow:

Ui(S) = vSi −
∑
r∈S

P r
i (1)

where Ui(S) is the utility of user i on the commodity set S,
vSi is the valuation of S, and P r

i is the transaction price on
which user i gets the item r. The utility function can reveal the

complementarity and substitutability because user’s valuations
can express them, i.e.,

Ui({a, b}) =


Ui({a}) + Ui({b}) + hi

for a, b is complementary
Ui({a}) + Ui({b})− li

for a, b is substitutable

(2)

In (2), hi ≥ 0 and li ≥ 0 can be viewed as the premium and
discount in one auction respectively. From the standpoint of
the buyer, if he/she can buy two complementary items a and
b in one auction successfully, he/she is willing to pay more.
However, two substitutable items are bought at one time only
when he/she can get a discount.

To express such heterogenous user demands in CAs, many
bidding languages were brought up, which are meant to
provide the syntax for encoding bid’s information in a succinct
and simple manner. Similar to any language, there is a trade-off
between expressiveness and simplicity. In the next subsection,
we review these bidding languages and put forward our novel
language to express heterogeneous demands of mobile users
in MCC markets.

B. Semantics of Bidding Languages

Bidding languages basically try to efficiently model differ-
ent bidding patterns. The most common method is the single-
minded bidding language, or called atomic bidding language.
It can only describe user demands as follow: a user i chooses
S, a subset of available items R, for valuation vSi [18].

Obviously, the single-minded bids are not expressive enough
to distinguish complementarity and substitutability, so the OR,
XOR, and other bidding language are put forward. In OR,
bundle-value pairs are ORed together, and any number of
these pairs may be accepted in an auction. For example,
({a}, 3)OR({b, c}, 4) implies a value of 3 for {a} and a
value of 7 for {a, b, c}. OR is good for expressing comple-
mentarity, but bad for expressing substitutability. XOR can
express any valuation function, which simply XOR together
all bundle-value pairs. It means that only one of the bundle-
value pairs can be accepted in an auction. For example,
({a}, 3)XOR({b, c}, 4) implies a value of 3 for {a} and a val-
ue of 4 for {a, b, c}. While XOR is more expressive than OR,
there are valuations that can be specified more succinctly by
OR. However, they sometimes are not very concise, therefore
some solutions try to combine OR and XOR to get benefits of
the both. The result introduces new languages: OR-of-XORs,
XOR-of-ORs, and the logical language [19].

Often each language is good in expressing some patterns
and weak or unable in expressing some other patterns. While
certain languages can be compared based on their expressivity,
it is not always possible to accurately compare two bidding
languages. However, the complicated bidding languages are
obviously more efficient to express various combinatorial bids
than the simple languages (atomics, OR and XOR), while the
former are more expensive on computing costs of WDP than
the latter.
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If our online MCC auction platform adopts a complicated
bidding language, although it allows mobile users to submit
many kinds of combinatorial bids, the performance of the
platform will still be good. Because in MCC markets, mobile
users are non-professional traders, they often cannot design
multiple combinations of various bids. Furthermore, if the
auction platforms are efficient enough to implement many
transactions immediately at the end of bidding period with
acceptable costs, the auctions can be held frequently and
the users do not need to bid many goods in one auction.
Therefore, our novel bidding language LMU restricts the
kinds of combinations that bidders may bid on, which not
only transmits this bidding function in a succinct way to the
platform but also reduces computational complexity.

The semantics of an LMU bid can be expressed in Backus-
Naur Form (BNF) as follows:

BID ::= (Comb Bid)|(Comb Bid)≤n

Comb Bid ::= Atom Bid|Atom Bid→Atom Bid

Atom Bid ::=< S, vS >

Therefore, an LMU bid can be one of four forms:
1) An atomic bid, (< S, vS >), means a user bids a set

of commodities S (S ⊆ R) with the valuation vS (vS ∈
N , and vS/|S| ≥ bmin). It is same as a single-minded
language, which can express complementarity.

2) A combinatorial bid, i.e., two atomic bids joined by
a binary operator →, is denoted as (< S1, v

S1 >→<
S2, v

S2 >), where S1 ⊂ R, S2 ⊂ R, and S1

∩
S2 = ϕ.

When a mobile user wants to bid substitutable goods,
he/she can express in the form. The equivalent repre-
sentation of this form in our LMU and XOR language
are:

(< S1, v
S1 >→< S2, v

S2 >) ⇐⇒
(< S1, v

S1 > XOR < S2 ∪ S1, v
S2 >) (3)

The user may be allocated S1 or S2 ∪ S1, but the two
cannot appear simultaneously.

3) An atomic bid with quantity range, (< S, vS >)≤n,
means a user wants to buy the atomic bid up to n units
(n ∈ N , and n > 1).

4) A combinatorial bid with quantity range, (<
S1, v

S1 >→< S2, v
S2 >)≤n, means a user wants to

buy the combinatorial bid up to n units (n ∈ N , and
n > 1).

The first two forms are suitable for mobile users who just
buy one unit of each type commodity, and the latter two
allow users to buy n copies of the same bid. Let Bid is one
atomic or combinatorial bid in LMU , multi-units of Bid can
be represented by OR as follows:

Bid≤n ⇐⇒ (Bid OR Bid OR . . .OR Bid)︸ ︷︷ ︸
n

(4)

The user can get one group of goods described in Bid, or 2
groups, at most n groups.

In Fig.3, the demand users Peter, Tom and Linda all submit
atomic bids: BP = (< {1, 2}, $5 >), BT = (< {2, 3}, $7 >)
and BL = (< {3}, $3 >). They also can combine atomic
bids to combinatorial bids or multi-units according to their
demands.

C. Advantages over Previous Languages

The design for bidding languages involves a trade-off be-
tween expressiveness and simplicity, so our LMU also needs
to express heterogenous demands of mobile users in a concise
way. Compared with OR, XOR and other complicated logical
bidding languages, LMU has the following advantages:

(1) Ease of use: The semantics of LMU is easy to under-
stand, and bidders can express their demands in the correct
format of LMU . The general mobile users cannot handle
too many logical operators, such as OR, XOR, and AND.
Therefore, they prefer to submit simple bids rather than apply
various logical operators to combine bids.

Consider the following scenario. There are 3 types of
services to auction, storage services, GIF animator services
and Flash maker services, denoted as a, b, and c respectively.
A user, Peter submits an atomic bid: B = (< {a, b}, $5 >),
which means he wants to buy one unit of storage service and
GIF animator service, which is valued complementary. If Peter
expects he has many pictures to be saved and processed to GIF,
he can submit (< {a, b}, $5 >)≤3 which means he can get 3
copies of them at most. Furthermore, Peter deems GIF anima-
tor service and Flash-maker service are substitutable, and he
buys both services only when there will be a discount. He can
submit a combinatorial bid (< {a, b}, $5 >→< {c}, $6 >).

(2) Representing quantity ranges: The previous bidding
languages cannot express buyer’s demands for multi-units of
goods directly. If a buyer needs 3 units of the good a at
most, he can submit a bid denoted as < {a}, $2 > OR <
{a}, $2 > OR < {a}, $2 > in OR. His demand even can not
be expressed in XOR. However, our LMU provides a simple
way to represent quantity ranges.

(3) Conciseness: LMU is concise in two respects. Firstly,
the quantity ranges of user’s demands can be represented
simply. Secondly, applying a binary operator → to express a
bid consisting of substitutable goods needs less characters than
that used in XOR. For example, Peter deems GIF animator
service and Flash-maker service are substitutable, so his bid
expressed in LMU is (< {a, b}, $5 >→< {c}, $6 >), while
in XOR is (< {a, b}, $5 > XOR < {a, b, c}, $6 >)

(4) Low cost of wireless network transmission: The bids
of mobile users are submitted to the auction platform via
various wireless networks. The features of LMU make the
bids be described simply, especially expressing quantity ranges
and demands for substitutable goods. Therefore, the costs of
wireless network transmission are reduced.

V. THE WINNER DETERMINATION PROBLEM

The problem of identifying which set of bids to accept has
usually been dubbed the WDP, or the combinatorial allocation
problem (CAP), which is a computational problem of how to
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efficiently determine the item allocation once the bids and asks
have been submitted to the auction platform. The efficiency
of an auction mechanism depends on the WDP model and its
algorithm.

A general WDP model of a single-sided combinatorial
auction can be stated as follows: in an auction, given the set
R of commodities, the set I of bidders, and the set B of bids
submitted by all the bidders, find an item allocation to bidders,
which maximizes the auctioneer’s revenue. More formally, the
model can be denoted as:

max
∑
i∈I

∑
S⊆R

Bi(S)x(S, i)

s.t.
∑
r∈S

∑
i∈I

x(S, i) ≤ 1 ∀r ∈ R∑
S⊆R

x(S, i) ≤ 1 ∀i ∈ I

x(S, i) ∈ 0, 1 ∀S ⊆ R, i ∈ I (5)

S is a subset of R, i.e., S ⊆ R. Bi(S) is a bid for
S submitted by bidder i. Without loss of generality, let
Bi(S) ≥ 0. If S is allocated to bidder i, x(S, i) = 1, otherwise
x(S, i) = 0.

It is an integer programming problem, which has been
proved to be NP-hard [20]. This problem is difficult for large
set of commodities R, specifically if bids exists for all subsets
of commodities.

Our solution is a many-to-many auction mechanism, i.e.,
combinatorial double auction, which allow buyers and sellers
bid simultaneously in one auction. The general combinatorial
auctions are single-sided, therefore the WDP model described
in problem (1) is unsuitable for our MCC combinatorial double
auction. Obviously, the objective of such double auction-
s should be maximizing the total surpluses of all traders,
including buyers and sellers. Therefore, the WDP of our
auction mechanism is formulated as an optimization problem
to maximize the social welfare, i.e., the total payoffs/utilities
of the users and providers.

In our combinatorial double auction, there are set R of
commodities, set I of mobile users, and set J of MCC
providers. Given set B = {B1, . . . , Bi, . . . , B|I|} of bids
submitted by all users, and set A = {A1, . . . , Aj , . . . , A|J|}
of asks offered by all providers, find an allocation of goods
to users, which maximizes the social welfare. To formulate
a feasible WDP model for our MCC combinatorial double
auction, the bids and asks need to be preprocessed.

A. Preprocessing of Bids and Asks

LMU enables every user to submit one of four types bids (an
atomic bid, an atomic bid with quantity range, a combinatorial
bids and a combinatorial bid with quantity range). To simplify
WDP, the dummy goods and sub-users are introduced to
transform various bids into one format: the one-unit atomic
bid. The bid transformation can be conducted according to
the following theorems:

Theorem 1: Any atomic bid with quantity range submitted
by a user, Bi = (< S, vS >)≤n, can be transformed to n
atomic bids (< S, vS >). Suppose they are submitted by n
sub-users. The solution to the origin WDP can be obtained by
the solution to the new WDP.

Theorem 2: Any combinatorial bid, Bi = (<
S1, v

S1 >→< S2, v
S2 >), can be transformed to 2 atomic

bids by introducing a dummy good (dummyi) and 2 sub-users
(su1

i , su
2
i ). Suppose su1

i submits (< S1 ∪ dummyi, v
S1 >)

and su2
i submits (< S1 ∪S2 ∪ dummyi, v

S2 >). The solution
to the origin WDP can be obtained by the solution to the new
WDP.

Theorem 3: Any combinatorial bid with quantity range,
Bi = (< S1, v

S1 >→< S2, v
S2 >)≤n, can be transformed

to 2× n atomic bids. The solution to the origin WDP can be
obtained by the solution to the new WDP.

In the same way, sub-providers are also introduced to
simplify the asks offered by the MCC providers. The transfor-
mation of asks can be conducted according to the following
theorem:

Theorem 4: Any ask offering more than one type of goods,
(< r1, c

r1
j , qr1j >,< r2, c

r2
j , qr2j >, . . . , < rm, crmj , qrmj >),

can be transformed to m simple asks (< rm, crmj , qrmj >).
Suppose they are submitted by m sub-providers. The solution
to the origin WDP can be obtained by the solution to the new
WDP.

The preprocessing is shown in Algorithm 1.
After the origin bids and asks are transformed according to

the above theorems, each user/sub-user only submits an atomic
bid and each provider/sub-provider only offers an ask of one
type of goods. The new commodity set is denoted as R̂, which
also includes the dummy goods. Similarly, there are new sets
Î of buyers, Ĵ of sellers, B̂ of transformed bids, and Â of
simplified asks. Each item in B̂ is denoted as B̂i =< Si, vi >,
and Si presents the bundle that the buyer i bids. Similarly, each
item in Â is Âj =< rj , cj , qj >, and rj presents the good
that the seller j sells.

B. The WDP Model

As the original bids and asks are processed in our MCC
combinatorial double auction, the WDP model can be formu-
lated as follows:

max(
∑
i∈Î

xiUi(Si) +
∑
j∈Ĵ

yjWj(rj))

s.t.
∑

i∈Î,r∈B̂i(1)

xi =
∑

j∈Ĵ,r=Âj(1)

yj ∀r ∈ R̂

yj ∈ {0, 1, . . . , qj} ∀j ∈ Ĵ

xi ∈ {0, 1} ∀i ∈ Î (6)

where xi denotes whether the buyer i trades in the allocation,
and yj denotes the transaction quantity of the seller j. The
variables (xi, yj), i ∈ Î , j ∈ Ĵ specify the auction result. By
mapping sub-users and sub-providers to origin mobile users
and MCC providers respectively, the MCC resource allocation
is acquired.
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Algorithm 1 Preprocessing of bids and asks
Input:

1) The set R of the commodities; the set I of the mobile
users; the set J of the MCC providers;
2) The set B = {B1, . . . , Bi, . . . , B|I|} of bids, the set
A = {A1, . . . , Aj , . . . , A|J|} of asks

Output:
The set B̂ of atomic bids, the set Â of simple asks, the
set R̂ of goods and dummy goods, the set Î of users and
sub-users, the set Ĵ of providers, dummy provider and
sub-providers,.

1: Initialization of Î ,Ĵ ,B̂,Â = ∅, R̂ = R
2: for all Bi ∈ B do
3: if Bi is not an atomic bid then
4: Transform Bi to a groups of atomic bids Sb

B̂ = B̂ ∪ Sb, Î = Î ∪ {subusers}
5: for all dummyi do
6: Ĵ = Ĵ ∪ {dpi}, Â = Â ∪ {(< dummyi, 0, 1 >)}

R̂ = R̂ ∪ {dummyi}
7: end for
8: else
9: B̂ = B̂ ∪Bi, Î = Î ∪ {useri}

10: end if
11: end for
12: for all Aj ∈ A do
13: if |Aj | ≥ 1 then
14: Transform Aj to a groups of simple asks Sa

Â = Â ∪ Sa, Ĵ = Ĵ ∪ {subproviders}
15: else
16: Â = Â ∪Aj , Ĵ = Ĵ ∪ {providerj}
17: end if
18: end for

The object of (6) is to maximize the total utilities of the
mobile users and MCC providers, i.e., social welfare, denoted
as Z(x,y). An auction mechanism is efficient if the allocation
maximizes social welfare. Ui(S) is the utility function of the
buyer i, which has been defined in (1). Wj(r) is the surplus
function of the seller j, and is formulated as follow:

Wj(r) = P r
j − crj (7)

where P r
j is the transaction price on which the seller j sells

the item r, and crj is the offered price submitted by the seller
j. The seller j can obtain the surplus Wj(r) by selling one
unit of commodity r.

Therefore, the object of (6) can be presented as:

Z(x,y) =
∑
i∈Î

xi(vi −
∑
r∈Si

P r
i ) +

∑
j∈Ĵ

yj(Pj − cj) (8)

Because ∑
i∈Î

xi

∑
r∈Si

P r
i =

∑
j∈Ĵ

yjPj (9)

we have
Z(x,y) =

∑
i∈Î

xivi −
∑
j∈Ĵ

yjcj (10)

Therefore, our WDP problem can be solved by the following
integer program:

(IP ) zIP =max(
∑
i∈Î

vixi −
∑
j∈Ĵ

cjyj)

s.t.
∑
i∈Î

brixi −
∑
j∈Ĵ

arjyj = 0 ∀r ∈ R̂

yj ∈ {0, 1, . . . , qj} ∀j ∈ Ĵ

xi ∈ {0, 1} ∀i ∈ Î (11)

To present the first constraint clearly, two matrixes b and a
are used. The b is a |R̂|× |Î| matrix, and each element is 0 or
1, i.e. bri ∈ {0, 1}. Because all the origin bids are transformed
to the atomic bids, one commodity appears at most once in
each atomic bid. If buyer i bids the commodity r, bri = 1.
Otherwise, bri = 0. Similarly, a is a |R̂| × |Ĵ | matrix, and
each element is also 0 or 1. If seller j offers the commodity
r, arj = 1. Otherwise, arj = 0. Furthermore, there is only
one element being 1 in each column of a, because all origin
asks are transformed to the form Âj =< rj , cj , qj > which
only consists of one type of commodities. After the origin
bids and asks are preprocessed according to the transformation
methods, the matrixes b and a are initialized.

In the next subsection, we design the decomposition algo-
rithm to relax the problem P to a linear formulation, and bring
up a pricing mechanism to decide transaction prices.

C. The Decomposition Algorithm And Pricing Mechanism

The optimization problem IP is also NP-hard because it
is a special case of the general WDP problem defined in (5),
which has been proved to be NP-hard [20]. Therefore, how to
find an optimal allocation solution and transaction prices of
each commodity is important.

Two approaches are used to find the optimal solution to
the general WDP of the single-sided combinatorial auctions,
shown in (5). The first one is the exact method, which replaces
the given problem by one with a larger feasible region that is
more easily solved. The upper bound on the optimal solution
value is obtained by solving a relaxation of the optimization
problem [20]. The second approach is to conduct one of
the standard Artificial Intelligence (AI) searches over all the
possible allocations, given the bids submitted [21]. Several al-
gorithms with satisfactory performance for problem sizes and
structures occurred in practice have been developed. However,
because of the wide applicability of combinatorial auctions,
one cannot hope for a general-purpose algorithm that can
efficiently solve every instance of this problem. Furthermore,
there is little research work on the double combinatorial
auctions.

To design a computationally efficient algorithm for our
combinatorial double auction problem, we first decompose
IP . Our decomposition algorithm reformulates the problem
to a linear programming problem, which can then be solved
in polynomial time with a subgradient algorithm. Then we rely
on the solution to the linear dual problem and use its optimal
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value to get an optimal solution to the original primal integer
program.

We adopt the Lagrangean relaxation to relax the first
constraint of our original problem IP by moving it into
the objective function with a penalty term. Then we get the
Lagrangean relaxation problem LR:

(LR) zLR(λ) =maxL(x,y;λ)

s.t. 0 ≤ yj ≤ qj ∀j ∈ Ĵ

0 ≤ xi ≤ 1 ∀i ∈ Î (12)

where L(x,y;λ) is the Lagrangean function, which is defined
as:

L(x,y;λ)=
∑
i∈Î

vixi −
∑
j∈Ĵ

cjyj

+
∑
r∈R̂

λr(
∑
j∈Ĵ

arjyj −
∑
i∈Î

brixi) (13)

and λ is a vector of Lagrangean multipliers, λ =
(λ1, . . . , λr, . . . , λ|R̂|).

Therefore, we get the Lagrangen dual problem LD of the
primal problem:

(LD) zLD =min zLR(λ)

s.t. λr ≥ 0 ∀r ∈ R̂ (14)

Computing zLD is easy, since there are many subgradient
algorithms for the Lagrangean relaxation. Our problem can
be deemed as a case of the Traveling Salesman Problem
(TSP), and then the subgradient algorithm in [22] is applied. A
subgradient of the Lagrangean function L(x,y;λ) is defined
as:

g = ∂L(x,y;λ)/∂λ (15)

Iterate λ(k) is generated according to the update recursion:

λ(k+1) = λ(k) + t(k)g(k) (16)

where t(k) being a scalar representing the step size and g(k) a
subgradient of the function L(x,y;λ) at the point λ(k). Phase
I in Algorithm 2 shows the subgradient algorithm in details.

The key point is to decide transaction prices. The constraint∑
i∈Î brixi −

∑
j∈Ĵ arjyj = 0(∀r ∈ R̂) restricts that the

total demand of all mobile users is equal to the total supply
of all MCC providers. Because the vector of the Lagrangean
multipliers relaxes it, the λ can be interpreted as a price vector.
When the Lagrangen dual problem LD is solved, the optimal
vector λ = (λ1, . . . , λr, . . . , λ|R̂|) is also obtained. Therefore,
the transaction prices of the commodities are decided, and
λr is the transaction price of the commodity r. In our MCC
combinatorial double auction, one type of goods only have
one price. The trade prices of the dummy goods all equal to
0.

Following the above steps, we present our detailed MCC
combinatorial auction mechanism in Algorithm 2. It is shown
how the auction mechanism decides commodity allocation and
transaction prices when the mobile users and MCC providers
submit bids and asks.

Algorithm 2 Winner Determination Algorithm of MCC Com-
binatorial Auction
Input:

The output of Algorithm 1
Output:

1) The allocation decision WB, WA
2) The vector of transaction prices P .

1: Construction of b,a, and get IP
{Phase I: Optimization}

2: Relax IP to LD by the Lagrangen Relaxation multipliers
λ

3: Initialization k = 1, λ(1) = (1, . . . , 1), g(1), ε > 0
4: while g(k) ≥ ε do
5: Compute x(k), y(k)

6: t(k) = (L̄− L(x(k),y(k);λ(k)))/∥ g(k) ∥2

7: λ(k+1) = λ(k) + t(k)g(k)

8: k = k + 1
9: end while

{Phase II: Transformation of Optimal Solution}
10: Remove dummy good prices from λ, P = (λ1, . . . , λ|R|)
11: for r = 1 to |R| do
12: With x, y, merge allocations of sub-users and sub-

providers into WB, WA
13: end for

The allocation decision (WB, WA) and transaction prices
(P ) are obtained by executing Algorithm 2, and these results
are published on the auction platform. WB is an |R| × |I|
matrix, where WBri denotes the amount of commodity r
allocated to user i. Similarly, WA is an |R| × |J | matrix,
where WArj denotes the quantity of good r sold by the
provider j. P is a vector of |R| elements, where Pr denotes
the transaction price of commodity r. The platform matches
users and providers according to WB and WA in sequence.
Then it reports the user allocation to providers. The match
result and amount that each user needs to pay are calculated
and announced to users. Once the charging and payment are
complete, users and providers establish the connection and
providers start to give services to users.

Obviously, Algorithm 2 is individually rational because
mobile users are never charged more than their valuations as a
result of the allocation. Besides, it is budget-balanced because
the total profits of providers is the same as the total payments
by users.

VI. SIMULATION AND EVALUATION

The main objective of our auction mechanism is to allocate
MCC resources effectively. Therefore, we focus on examining
the allocation performance of our mechanism under illustra-
tive mobile user’s demands and provider’s offer distributions.
Furthermore, the computational efficiency is also an important
criterion, for mechanisms should be designed to require as
little computation as possible. Because the popular simulation
softwares (e.g., CloudSim) support neither auction protocols
nor price generation, we simulate auctions with different kinds
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Fig. 4. Allocation performance of the proposed MCC combinatorial double auction mechanism (Scenario 1)
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Fig. 5. Allocation performance of the proposed MCC combinatorial double auction mechanism (Scenario 2)
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Fig. 6. Simulation results: computational efficiency (iterations executed to get the optimal solution) of the proposed MCC combinatorial double auction
mechanism

of scales to evaluate our solution in Matlab.
There are some research work applying various auction

mechanisms to allocate cloud or mobile cloud resources.
But we do not compare our auction mechanism with these
solutions for the following reasons.

Firstly, no prior solutions have implemented online com-
binatorial double auctions. The existing solutions are single-
sided auctions, which only support one-to-many negotiations.
Usually the buyers are bidders to bid goods provided by the
auctioneer. In addition, most of them are not combinatorial

auctions, i.e., the bidders only bid one type of goods in one
auction. Our solution enables buyers and sellers to submit bids
simultaneously and allows users to bid a bundle of goods at
one auction.

Secondly, the existing solutions often compare themselves
with some theoretic auction mechanisms, which can get the
social optimal allocation decisions but have not been applied
in real markets [3] [13]. For example, Zhang et al. [3] com-
pared their solution with the Vickrey-Clarke-Groves (VCG)
mechanism. Although such theoretic mechanism can get the
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allocation decision with the optimal social welfare, it can not
be followed in real-world cloud markets because it is too
difficult for users to understand or the cost is too high. If
social welfare of a feasible auction is close to such a theoretic
optimal, it also proves the auction performance is acceptable.
In this section, we compare our solution with the sequential
single-minded double auctions on allocation performance.

We consider a simulation scenario with a set R of commodi-
ties, a set I of mobile users and a set J of MCC providers.
Because Algorithm 1 can preprocess all the complicated origin
bids and asks without loss of generality, suppose each user
only submits an atomic bid (< S, vS >), and each provider
only offers an ask for one type of goods (< r, c, q >). The
bundle Si that user i bids is selected from the 2|R|−1 subsets
of R randomly. User values, provider’s offered prices and
quantities are random numbers.

To compare the allocation performance of the proposed
combinatorial double auction with the single-minded auctions,
we can construct |R| sequential auctions a1, . . . , ar, . . . , a|R|,
where the r − th auction sells the commodity r. If user i
submits Bi = (< Si, v

S
i >), Si = {rl, rm, rn}, the bid can be

divided into 3 bids for the single-minded auctions sal, sam
and san, and the value for each bid is set as vSi /3. We evaluate
the following three criterions:

1) The Social Welfare, Es, is the total payoffs/utilities
of the sellers and buyers. The social welfare of the
proposed combinatorial auction Es(CA) is the optimal
value of objective function Z(x,y), and that of the se-
quential auctions Es(SA) is the sum of |R| sequential
auctions: Es(SA) =

∑
r∈R Es(ar).

2) The Transaction Volume, Ev , is the quantity of the
goods transacted successfully, i.e., the amount of the
transactions, which reflects the market efficiency of the
auction mechanisms. The larger transaction volume,
the better market efficiency. The transaction volume
of the proposed combinatorial auction Ev(CA) =∑

j∈J yj , and that of the sequential auctions Ev(SA) =∑
r∈R Ev(ar).

3) The Average Ratio of Transaction Prices, α, is
the average ration of transaction price in our combi-
natorial auction to that in sequential auctions. α =
(
∑

r∈R PCA
r /pSA

r )/|R|.

In order to provide optimal solutions to each single-minded
auction ar, we use the Marshallian path to match bids and
asks [23]. The Marshallian path is simply a sequence of trades
from left to right along the supply and demand curves. If the
maximum valuation of a buyer is no less than the minimum
cost of a seller, transaction occurs. The action is repeated until
no valuation is equal or more than a cost. The Marshallian
path gives a theoretic description of how to achieve the
market equilibrium, therefore the obtained allocation is social
optimum. The final trade of the Marshallian path is constrained
to be near the competitive equilibrium, and the trade price can
be deemed as the equilibrium price.

Figures 4 and 5 give the comparisons of the combinatorial

auctions and sequential auction on social welfare, transaction
volume and transaction price in two scenarios on different
scales. The amount of users and that of providers are fixed,
while the number of commodities is on the increase. In Fig.
4, |I| = 2000, |J | = 100 and |R| = 2, 3, . . . 10. While in Fig.
5, |I| = 5000, |J | = 200 and |R| = 2, 3, . . . 15.

Comparing the simulation results, we can observe that as the
number of commodities increases, the allocation performance
of combinatorial auctions is always close to the optimal
sequential auctions. Furthermore, the transaction prices are
stable.

To evaluate the computational efficiency of our mechanism,
we analyze how many iterations are executed in simulation
markets on different scales, as shown in Fig. 6. The number
of commodities is fixed, |R| = 10. In Fig. 6a, the amount
of users and that of providers are both on the increase. There
are 5000 users and 100 providers at most. The peak value
of iterations is 59 and the mean value is 23.68. Figure 6b
gives the iteration curve with different amount of users, when
the number of providers is also fixed, |J | = 100. Figure 6c
shows iterations varying with the amount of providers with
fixed numbers of commodities and users. The results prove
that the algorithm is feasible.

Overall, from the simulation results we can conclude that:
first, allocation efficiency of our approach is high because
the social welfare and transaction volume of our approach
are close to the social optimal solution and transaction prices
are stable. Second, our WDP algorithm is convergent and can
obtain the optimal results with acceptable iterations.

VII. CONCLUSION

Auctions are gradually adopted to solve resource allocation
and pricing problems in cloud computing, and many cloud
auction mechanisms are designed. However these solutions
are unsuitable in MCC markets. In this paper, for the first
time, we apply the combinatorial double auction mechanism
in MCC resource allocation and design an online auction
framework to implement the mechanism. It enables mobile
users to bid bundles of cloud services at one auction. For
the consideration of facilitating mobile users, a novel bidding
language is designed to express user’s valuations concisely and
it only needs to transmit few data via wireless networks. Then
a model of WDP for our auction mechanism is formulated and
an algorithm is designed to solve WDP, which can determine
winners and prices of each auction in affordable time. The
allocation obtained by our approach is individually rational
and budget-balanced. At last, we design simulation scenarios
to evaluate our solution. The experiment results show that the
allocation performance of our solution is very close to the
social optimal allocation and the computational cost is also
feasible.
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[18] D. Lehmann, L. I. Oćallaghan, and Y. Shoham, “Truth revelation in
approximately efficient combinatorial auctions,” Journal of the ACM
(JACM), vol. 49, no. 5, pp. 577–602, 2002.

[19] C. Boutilier and H. H. Hoos, “Bidding languages for combinatorial
auctions,” in International Joint Conference on Artificial Intelligence,
vol. 17, no. 1. LAWRENCE ERLBAUM ASSOCIATES LTD, 2001,
pp. 1211–1217.

[20] T. Sandholm, “Approaches to winner determination in combinatorial
auctions,” Decision Support Systems, vol. 28, no. 1, pp. 165–176, 2000.

[21] T. Sandholm and S. Suri, “Bob: Improved winner determination in
combinatorial auctions and generalizations,” Artificial Intelligence, vol.
145, no. 1, pp. 33–58, 2003.

[22] F. Fumero, “A modified subgradient algorithm for lagrangean relax-
ation,” Computers & Operations Research, vol. 28, no. 1, pp. 33–52,
2001.

[23] P. J. Brewer, M. Huang, B. Nelson, and C. R. Plott, “On the behavioral
foundations of the law of supply and demand: Human convergence and
robot randomness,” Experimental economics, vol. 5, no. 3, pp. 179–208,
2002.


